CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

www.PapaCambridge.com MARK SCHEME for the October/November 2013 series

0580 MATHEMATICS

0580/42

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

BB CAMBRIDGE

			my
	Page 2	Mark Scheme	Syllabus
		IGCSE – October/November 2013	0580
abbro ao so	eviations correct answer		Syllabus 0580 r
ер	dependent		, C
	follow through	h after error	- OA
\mathbf{w}	ignore subseq		
e	or equivalent		
C	Special Case		•
	*.1		

Abbreviations

correct answer only cao correct solution only cso

dep dependent

or equivalent oe SCSpecial Case

without wrong working www anything rounding to art seen or implied soi

	Correct answer	Mark	Part marks
1	(a) (i) 3216 Final answer	2	M1 for $(18900 - 5500) \times 0.24$ oe
	(ii) 1307 Final answer	2FT	FT (18900 – their (a)(i)) ÷ 12 correctly evaluated M1 for (18900 – their (a)(i)) ÷ 12
	(b) 4.5[%] nfww	2	M1 for $\frac{19750.50 [-18900]}{18900} \times 100$ or $\frac{19750.50 - 18900}{18900}$
	(c) A by 31.05 or 31.04 to 31.05 or 31.[0] 31.1[0]	5	M1 for $1500 \times 4.1/100 \times 3$ [+ 1500] oe M1 for 1500×1.033^3 [- 1500] oe A1 for 1684.5 or 184.5 or $1653[.45]$ or $153[.45]$
			and M1dep for subtraction of <i>their</i> amounts or <i>their</i> interests
2	(a) 36.9° or 36.86 to 36.87	2	M1 for $tan[DBC] = 1.8/2.4$ oe
	(b) (i) $1.8^2 + 2.4^2$ leading to $\sqrt{9}$	2	M1 for $1.8^2 + 2.4^2$ or better
	(ii) $[\cos ABD] = \frac{6.46^2 + 3^2 - 8.6^2}{2 \times 6.46 \times 3}$ 127 or 126.8	M2 A2	M1 for correct cos rule but implicit version A1 for -0.599
			After 0 scored, SC2 nfww for answer 127 or 126.8 to 126.96 from other methods or no working shown
	(c) 39.6 or 39.7 or 39.59 to 39.68	3	M2 for $\frac{1}{2}(2.4 + 8.6) \times 1.8 \times 4$ oe Or M1 for $\frac{1.8}{2}(2.4 + 8.6)$ oe soi by 9.9 to 9.92

5 0		Cullabus	.0
Page 3	Mark Scheme	Syllabus 🔪	8
	IGCSE – October/November 2013	0580	No.

	T		5(2) 1) 2(2) 1)
3	(a) $\frac{4x-7}{10}$ final answer inflow	3	M2 for $\frac{5(2x-1)-2(3x+1)}{2\times 5}$ or $\frac{5(2x-1)}{5\times 2} - \frac{2(3x+1)}{5\times 2}$ or M1 for attempt to convert to common denominator of 10 or multiple of 10 with one error in numerator
	(b) $x^2 + 9$ final answer nfww	4	B3 for $4x^2 - 6x - 6x + 9 - 3x^2 + 12x$ or correct answer given and then spoilt or B1 for $4x^2 - 6x - 6x + 9$ seen and B1 for $-3x^2 + 12x$ or $-(3x^2 - 12x)$ seen
	(c) (i) $(2x-1)(x+3)$ isw solving	2	M1 for $(2x + a)(x + b)$ where $ab = -3$ or $2b + a = 5$ with integers a and b
	(ii) $\frac{2x-1}{2(x-3)}$ or $\frac{2x-1}{2x-6}$ final answer nfww	3	M2 for $2(x+3)(x-3)$ or $(2x-6)(x+3)$ or $(2x+6)(x-3)$ seen or M1 for $2(x^2-9)$ seen
4	(a) (i) $90 \div (42/360 \times \pi \times 8^2)$ o.e. $3.836 \text{ to } 3.837$	M3 A1	M2 for $42/360 \times \pi \times 8^2 \times h = 90$ or M1 for $42/360 \times \pi \times 8^2$
	(ii) 131 or 130.75 to 130.9 nfww	5	M2 for $42/360 \times \pi \times 2 \times 8 \times 3.84$ oe [22.48 to 22.53] or M1 for $42/360 \times \pi \times 2 \times 8$ oe soi [5.86 to 5.87] and M1 for $2 \times (8 \times 3.84)$ [61.37 to 61.44] and M1 for $2 \times (42/360 \times \pi \times 8^2)$ [46.88 to 47]
	(b) 2.42 or 2.416 to 2.419	3	M2 for $3.84 \times \sqrt[3]{\frac{22.5}{90}}$ oe or $h = \sqrt[3]{\frac{3.84^3 \times 22.5}{90}}$ or M1 for $\sqrt[3]{\frac{22.5}{90}}$ oe or $\sqrt[3]{\frac{90}{22.5}}$ oe seen or $\frac{3.84^3}{h^3} = \frac{90}{22.5}$ oe

Page 4	Mark Scheme	Syllabus	0
	IGCSE – October/November 2013	0580	100

	T	1	3.
5	(a) 7, 11.5, 4.5	1,1,1	ANT.
	(b) Correct curve cao	5	B3FT for 10 correct plots, on correct vertice grid line and within correct 2 mm square vertically Or B2FT for 8 or 9 correct plots Or B1FT for 6 or 7 correct plots and B1 indep for two separate branches on either side of y-axis
	(c) (i) $0.69 < x < 0.81$	1	
	(ii) $-2.3 < x < -2.2$ -0.8 < x < -0.6		
	-0.8 < x < -0.0 $0.35 < x < 0.5$	3	B1 for each correct After 0 scored, allow SC1 for drawing line $y = 7.5$ long enough to cross curve at least once
	(d) (i) $y = 10 - 3x$ ruled correctly	B2	long enough to cross curve twice.
			B1 for ruled line gradient -3 or y intercept at 10 but not $y = 10$ Or B1 for 'correct' but freehand
	-0.55 < x < -0.45	B1dep	Dependent on at least B1 scored for line
	0.35 < x < 0.45	B1dep	S openius in an ionic 21 scored for fine
	0.55 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Біцер	After 0 scored, SC2 for -0.5 and 0.4 [from solving equation]
	(ii) $10 1 -2$ or $-10 -1 2$	3	B2 for $2 - x - 10x^2$ [= 0] oe
			Or B1 for $\frac{2}{x^2} - \frac{1}{x} - 10 = 0$ oe Correctly
			eliminating $-3x$ Or B1 for $2-x-3x^3 = 10x^2 - 3x^3$ oe Correctly clearing fractions

Page 5	Mark Scheme	Syllabus	No.
	IGCSE – October/November 2013	0580	100

6	(a) (i)	1110	oe		2	M1 for $\frac{1}{11} \times \frac{1}{10}$
	(ii)	$\frac{6}{110}$	oe	$\left[\frac{3}{55}\right]$	2	M1 for $\frac{3}{11} \times \frac{2}{10}$
	(iii)	$\frac{8}{110}$	oe	$\left[\frac{4}{55}\right]$	2FT	FT their (a)(ii) + $\frac{2}{11} \times \frac{1}{10}$ correctly evaluated
						or M1 their (a)(ii) + $\frac{2}{11} \times \frac{1}{10}$
	(b) (i)	$\frac{6}{990}$	oe	$\left[\frac{1}{165}\right]$	2	$\mathbf{M1} \text{ for } \frac{3}{11} \times \frac{2}{10} \times \frac{1}{9}$
	(ii)	$\frac{336}{990}$	oe	$\left[\frac{56}{165}\right]$	2	$\mathbf{M1} \text{ for } \frac{8}{11} \times \frac{7}{10} \times \frac{6}{9}$
	(iii)	$\frac{198}{990}$	oe	$\left[\frac{1}{5}\right]$	5	M4 for $3\left(\frac{3}{11} \times \frac{2}{10} \times \frac{8}{9}\right) + 3\left(\frac{2}{11} \times \frac{1}{10} \left[\times \frac{9}{9}\right]\right)$ oe
						or M3 for $3\left(\frac{3}{11} \times \frac{2}{10} \times \frac{8}{9}\right)$ or $3\left(\frac{2}{11} \times \frac{1}{10} \left[\times \frac{9}{9} \right] \right)$ oe
						Or M1 for $\frac{3}{11} \times \frac{2}{10} \times \frac{8}{9}$ oe seen and M1 for
						$\frac{2}{11} \times \frac{1}{10} \left[\times \frac{9}{9} \right] $ oe seen

Page 6	Mark Scheme	Syllabus	· 03
	IGCSE – October/November 2013	0580	73-

			- A
7	(a) 14 10 or 2 10 pm final answer	2	M1 for (0)8 10 oe or answer 14 hours 10 minutes or answer 2 10 [am]
	(b) 5 hours 45 minutes cao	2	M1 for 345 [mins] seen or for 805 /7 × 3 oe or 5.75 seen
	(c) (i) 798 or 798.2 to 798.4	2	M1 for $10712 / 13\frac{25}{60}$ or $10712 \div 13.4$
	(ii) 1.82×10^5 or 1.815×10^5 to 1.816×10^5	4	B3 for 182000 or 181500 to 181600 seen or M2 for 10712000/59 oe or M1 for figs 10712/figs 59 soi by figs 182 or figs 1815 to 1816 and B1 FT for their number of litres correctly converted to standard form rounded to 3sf or better
	(d) 8600	3	M2 for 10148 ÷ 1.18 oe or M1 for 10148 associated with 118[%]
8	(a) (i) -6	1	
	(ii) 2.75 oe	2	M1 for $[g(x) =] 0.5$ or $7/14$
			Or $\left(\frac{7}{x+1}\right)^2 + 5\left(\frac{7}{x+1}\right)$ oe
	(b) $\frac{x-3}{4}$ or $\frac{x}{4} - \frac{3}{4}$ Final answer	2	M1 for $y - 3 = 4x$ or better or $x = 4y + 3$ or better or $\frac{y}{4} = \frac{3}{4} + x$ or flowchart with -3 then $\div 4$
	(c) (i) 5	2	M1 for $4x = 23 - 3$ or $x + \frac{3}{4} = \frac{23}{4}$ or better
	(ii) $x^2 + 5x - 7 = 0$	B1	May be implied by correct values in formula
	$\frac{-5 \pm \sqrt{5^2 - 4(1)(-7)}}{2(1)} \text{oe}$	B1 B1	B1 for $\sqrt{5^2 - 4(1)(-7)}$ or better [53]
			If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$, B1 for -5 and 2(1) or better No recovery of full line unless seen
	1.14 and –6.14 final answers	B1 B1	Or SC1 for 1.1 or 1.140 and –6.1 or – 6.140 Or answers –1.14 and 6.14

Page 7	Mark Scheme	Syllabus	2
	IGCSE – October/November 2013	0580	100

9	(a) (i) Reflection $x = -2$ oe	2	B1 for either
	(ii) Translation $\begin{pmatrix} -7\\2 \end{pmatrix}$ oe		
		2	B1 for either
	(iii) Stretch x-axis oe invariant [factor] 3	3	B1 for each
	(b) (i) Triangle with coords at (8, 2) (7, 3) and (7, 5)	2	B1 for rotation about (6, 0) but 90° anticlockwise Or for rotation 90° clockwise around any point
	(ii) Triangle with coords at $(-2, -5) (-6, -5)$ and $(-8, -7)$	2	B1 for 2 correct points or for enlargement of SF –2 any centre
	(iii) Triangle with coords at $(1, -1)$ (4, -6) and $(3, -5)$	2	B1 for 2 correct points or coordinates of 2 points shown
	$\begin{pmatrix} \mathbf{c} & \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \end{pmatrix}$	2	B1 for one row or one column correct but not identity matrix.
			Or SC1 for $\begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$
10	(a) 48 and 57, $9n+3$ oe	1 2	B1 for $9n + k$ oe
	(b) 56 and 50, $86 - 6n$ oe	1 2	B1 for $k - 6n$ oe
	(c) 125 and 216, n^3 oe	1 1	
	(d) 130 and 222 $n^3 + n$ oe	1 1FT	FT their (c) + n dep on expression in n in (c)